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2 
Abstract

We introduce Satometer, a tool that can be used to estimate the percentage of the search space
actually explored by a backtrack SAT solver. Satometer calculates a normalized minterm count for
those portions of the search space identified by conflicts. The computation is carried out using a
zero-suppressed binary decision diagram (ZBDD) data structure and can have adjustable accu-
racy. The data provided by Satometer can help diagnose the performance of SAT solvers and can
shed light on the nature of a SAT instance.
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1   Introduction
The last few years have seen significant algorithmic advances in, and carefully-crafted implemen-

tations of, Boolean Satisfiability (SAT) solvers [3, 16, 18, 24, 27, 29]. This has led to their success-
ful application to a wide range of large-scale electronic design automation (EDA) problem instances
consisting of thousands of variables and millions of clauses [4, 13, 19, 22, 25, 26]. Despite these
remarkable developments, SAT solvers cannot escape the underlying worst-case exponential com-
plexity of their search space and must sometimes be aborted after a certain time-out limit has been
reached. Typically, when a solver aborts it provides very little data about how much progress it had
achieved up to that point. Such data can be quite useful. Knowing, for instance, that the solver had
managed, after several hours, to explore only 1% of the search space might suggest a very hard
problem instance and the need, perhaps, to try a different approach. If, on the other hand, the solver
reports exploring more than 99% of the search space without finding a solution, it may be reason-
able to assume that the instance has very few satisfying assignments or is possibly unsatisfiable.

Satometer (pronounced like barometer) is an accessory that can be used with any backtrack search
SAT solver to report the percentage of search space actually explored by the solver. It requires the
solver to emit the set of clauses corresponding to the conflicts encountered during the search. It can
be used dynamically, while the SAT solver is running, to indicate progress in the search for a solu-
tion. It is more useful, however, as a postprocessor to analyze the result of an aborted or completed
search.

The paper is organized as follows. In Section 2 we present an overview of SAT. This is followed
by a summary of previous work in Section 3. In Section 4, we introduce our measure of search
progress. We then describe, in Section 5, how this measure can be computed using BDDs and ZB-
DDs. In Section 6 we illustrate the utility of this measure in a variety of experimental scenarios and
conclude, in Section 7, with a summary of the paper’s main contributions. 

2   SAT Definition
Traditionally, a Boolean formula  is expressed in product of sums or conjunctive normal form

(CNF). Each sum , referred to as a clause, is a disjunction of literals, where a literal  is either a
variable  or its negation . A clause  subsumes another clause  if . A literal with
no assigned truth value is referred to as a free literal. An unresolved clause with a single free literal
is known as a unit clause. A clause is satisfied if a at least one of its literals is set to 1. Consequently,
a formula is satisfied if all its clauses are satisfied, and unsatisfied if at least one clause is unsatis-
fied. The goal is to identify a set of assignments for variables that would satisfy the formula or prove
that no such assignment exist and that the formula is unsatisfiable.

Several ways exist to solve this problem. A trivial solution, referred as exhaustive search, is to try
all  possible assignments, where  is the number of variables in the problem. Clearly, it is im-
possible to try all assignments. An example is shown in Figure 1(a). Another solution, referred to
as local search [21], identifies satisfiable instances by randomly selecting variable assignments.
This approach is characterized as incomplete, since it can only prove satisfiability, but can’t estab-
lish unsatisfiability. Finally, backtrack search algorithms have been proposed. Unlike local search,
backtrack search [9] is known to be complete, as it can establish satisfiablity and unsatisfiability
given enough time. Therefore, we believe backtrack search is the most robust approach for solving
SAT problems. 

The Davis, Logemann, and Loveland search procedure (DLL) [9], provides the basis for the ma-
jority of backtrack search algorithms. The procedure performs a depth-first search in the decision
tree over the problem variables. It starts by selecting a decision variable according to a branching
heuristic. Implications are identified by Boolean Constraint Propagation (BCP) [16] which itera-
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tively applies the unit clause rule. The unit clause rule searches the clause database for a unit clause
and assigns the single free literal to satisfy the clause. If a conflict is detected, in which a partial
variable assignment unsatisfies one or more clauses, the procedure backtracks and unassigns the last
decision level. The procedure terminates and proves satisfiability when all variables are assigned
and no conflicts have been detected or unsatisfiability when no new variable assignment can be
made without producing an unsatisfied clause.

We should note that applying BCP during the search process can effectively prune the search
space, as the search algorithm is forced to skip areas of the search space that are covered by the op-
posite assignments of the implications. Thus, conflicts can be detected at an early stage of the search
process as shown in Figure 1(b).

Recently, several enhancements to the DLL approach have been proposed. Among the various
enhancements, conflict analysis, which was introduced in GRASP [16], is worth mentioning, since
it can significantly prune the search space. The procedure is called after each conflict to analyze the
causes of the conflict and generate adequate information to prevent the conflict from occurring at
different parts of the search space. A conflicting assignment consists of a conjunction of antecedent
variable assignments that identify a sufficient condition to lead to a conflict. Negating the conflict-
ing assignment produces a conflict-induced clause that doesn’t exist in the clause database. Adding
the new clause to the clause database has the advantage of helping the deduction engine identify
future implications that are not derivable with the original clause database and avoids regenerating
the same conflicting assignment in future parts of the search process. Therefore, almost all back-
track search SAT algorithms today implement conflict analysis in their diagnosis engines.

3   Previous Work
Several researchers have explored various techniques for predicting the cost of solving a SAT

problem by estimating the size of the decision tree that will be searched to solve the problem. Knuth
[11] laid the foundation for this work by using iterative sampling. The basic idea is to explore a sin-
gle random path from the root node to a leaf node. The number of successors  of each node at
level  is recorded. Assuming that all nodes, at the same decision level, share the same number of
successors, the number of nodes in the decision tree can be estimated using the formula:

(1)

The estimate is improved by averaging over a number of iterations.
More recent work by Purdom [20], extended Knuth’s algorithm with partial backtracking. The

idea is to traverse a number of successor nodes  for each visited node as opposed to traversing a
single successor node as shown in Knuth’s algorithm. Purdom showed that this modification is
more effective on deep trees. The proposed algorithm is identical to Knuth’s algorithm when

 and follows a complete backtracking approach when all successors are traversed. The trade
off between the estimate accuracy and the runtime overhead depends on the value of . 

Fig. 1. Examples of (a) Exhaustive search (b) Backtrack search
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Knuth’s algorithm was also extended by Chen [7]. Chen’s approach is based on heuristic sam-
pling of the nodes in the decision tree, in which a cost function is associated with each node. The
goal is to estimate the cost of processing the complete set of nodes in the decision tree.

Recently, Kokotov and Shlyakhter [12] described a progress bar that can be integrated into a
backtrack SAT solver to estimate the time left to complete the search. The bar is updated based on
either historical or predictive estimates of the size of the decision tree maintained by the SAT solv-
er. Historical estimators are based on averaging the time spent on nodes at the same decision level
of the node being examined. The assumption is that particular, structured problems, are likely to
share similar subtree sizes between nodes at the same decision level. They propose to further im-
prove the average by weighting the average according to the distance between the nodes. The pre-
dictive estimators ignore the subtree sizes of previous nodes and instead focus on estimating the
needed runtime by analyzing the clauses in which the variable appears in. The premise is that vari-
ables that eliminate more clauses, either by satisfying clauses directly or implying other assign-
ments, are likely to require less time to explore. They reported that the bar is able to predict progress
with an accuracy of 80-90% without significantly impacting the solver’s run time. The results, how-
ever, are unbounded and no guarantees are given to confine the accuracy.

Unlike the previous approaches, the focus of Satometer is to measure the search space explored
by a backtrack search solver and report on the progress of the solver. Satometer doesn’t provide any
estimate on the size of the decision tree.

4   Measuring Search Progress
In our approach, we view the search process as a sequence of moves that continually (and system-

atically) modify a (partial) variable assignment until 1) a satisfying assignment (a solution) is found,
2) the formula is proven to be unsatisfiable (has no solution), or 3) a time-out limit is reached. Along
the way, many assignments that are explored will correspond to zeros of the function represented
by the formula and will cause the search process to backtrack. Every time such a “conflict” occurs,
it identifies a portion of the search space that can be regarded as having been explored and found to
contain no solutions.

Let  denote the assignments that correspond to the first i conflicts. We can measure
how much of the search space has been explored by counting the number of minterms* covered by
the function . Normalizing this count by the total size of the space yields the per-
centage of the space that has been explored up to this point. We will use the notation  to express
the normalized number of minterms of the function . Thus, , , and

.† In the sequel, we will refer to  as the size of .
This measure can be equivalently computed by considering the conflict clauses identified at each

conflict. Let  denote the conflict clauses identified after the first i conflicts. In gener-
al,  as one or more conflict clauses may be identified at each conflict. The portion of the search
space that would have been explored after processing the ith conflict can now be computed as

.
An illustration of these computations is shown in Figure 2 for the 4-variable formula:

(2)

* Complete truth assignment that sets the function to 1.
† Assuming that the number of variables is 2.

A1 A2 … Ai, , ,

A1 A2 … Ai+ + +
 f 

f a b+ 75%= a b⋅ 25%=
a b⊕ 50%=  f f

C1 C2 … Cj, , ,
j i≥

1 C1 C2 … Cj⋅ ⋅ ⋅–

ϕ a b c+ +( ) a b c ′+ +( ) a ′ b c ′+ +( ) a c d+ +( ) ⋅=

a ′ c d+ +( ) a ′ c d ′+ +( ) b′ c ′ d ′+ +( ) b′ c ′ d+ +( )
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5   Computing Space Coverage
When the conflicting assignments are disjoint (i.e., when  for ), space coverage

can be simply calculated by the formula:

. (3)

Equivalently, if the conflict clauses are disjoint, i.e. if  for , then space coverage
is simply

. (4)

In other words, if conflicts identify non-overlapping pieces of the search space, then the size of
the explored space can be found by simply adding the sizes of the different pieces. In general, this
will not be the case except for standard backtrack algorithms that do not employ conflict diagnosis
to prune the search space. To compute the size of the explored space in such cases we have no
choice but to build some type of symbolic representation for the disjunction of conflict assignments
or the conjunction of conflict clauses. We describe below the two representations we examined and
show how we used them to measure space coverage. Without loss of generality, we restrict the dis-
cussion to building representations for conjunctions of conflict clauses. 

5.1  Using BDDs

The conflict clauses can be symbolically “anded” using a reduced ordered binary decision dia-
gram (ROBDD or BDD for short) [5]. BDD semantics allow us to write the function  at a node
labeled with variable  using Boole’s expansion:

Decisions
Impli-
cations

Conflicts Explored Space
Y/N Clause Minterms %

1 N

2 N

3 Y 2 12.5

4 Y 4 25

5 Y 8 50

6 N

7 N

8 Y 10 62.5

9 N Solution!

a

ab

abc d ′ a ′ b ′ c ′+ +( )
abc ′ d a ′ b ′ c+ +( )
ab ′ c ′d a ′ b+( )
a ′
a ′b
a ′bc d ′ a b ′ c ′+ +( )
a ′bc ′ d

Decisions
Impli-
cations

Conflicts Explored Space
Y/N Clause Minterms %

1 N

2 N

3 Y 4 25

4 Y 6 37.5

5 Y 10 62.5

N

6 N Solution!

a

ab

abc d ′ b ′ c ′+( )
ab c ′d a ′ b ′+( )
a b′c ′d a ′( )

a ′
b a ′c ′d

Fig. 2. Execution traces of two different SAT solvers on the formula in (2) 
illustrating how search progress is measured.

(a) Execution trace of a basic (b) Execution trace of a conflict-based 
backtrack SAT Solverbacktrack SAT Solver

Ak Al⋅ 0= k l≠

A1 A2 … Ai+ + + Ak
1 k≤ i≤

∑=

Ck Cl+ 1= k l≠

1 C1 C2 … Cj⋅ ⋅ ⋅– 1 Ck–( )
1 k≤ j≤

∑=

f
x
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(5)

where  and  are the functions associated with the 0- and 1-children of that node (see Table I.)
This immediately leads to the following formula for the size of :

(6)

The size of the function represented by a BDD can now be obtained by sweeping the BDD from
the terminal nodes towards the top node and applying (6) at each visited node. The sweep is initial-
ized by setting  and  for the constant functions of the terminal nodes.

5.2  Using ZBDDs

The problem with the BDD representation, of course, is that it quickly runs out of memory. An
alternative that has lower memory requirements is the zero-suppressed BDD (ZBDD) originally
proposed by Minato [17] for manipulating large combination sets, including sets of Boolean cubes.
A combination set  can be regarded as a set of sets, e.g. . Recently,
Chatalic and Simon [6] demonstrated that ZBDDs can be an effective implicit representation of
large CNF formulas and showed how they can be used to perform “multi-resolution” to solve some
large structured SAT instances. In this scenario, the above example set corresponds to the CNF for-
mula , i.e. each combination is viewed as an OR term (a clause) and the
entire set (a union of combinations) as an AND term. Such an interpretation allows the semantics
of Boolean algebra to be layered on top of the semantics of set algebra to obtain further compression
of the ZBDD structure. In particular, Chatalic and Simon extended the standard ZBDD set-union
operation to a subsumption-free union that automatically removes any clause that is completely sub-
sumed by another clause. In the above example, combination  is subsumed by combination

 yielding the logically equivalent set . Additional reduction rules based
on literal absorption, i.e. , were subsequently described in [1].

TABLE I: Semant ics  of  Decis ion  Diagrams

Internal Nodes Terminal Nodes

BDD

Z
B

D
D

Set

CNF

DNF

x
f

g h

0
f

1
f

f x ′ g⋅ x h⋅+= f 0= f 1=

f g x{ } h×∪= f ∅= f ∅{ }=

f g( ) x h+( )⋅= f 1= f 0=

f g( ) x h⋅( )+= f 0= f 1=

R
epresentation

D
iagram

 Type

f x ′ g⋅ x h⋅+=

g h
f

 f 
1
2
--- g h+( )=

0 0= 1 1=

S a b,{ } c d e, ,{ } a d,{ } b{ }, , ,{ }

a b+( ) c d e+ +( ) a d+( ) b( )

a b,{ }
b{ } c d e, ,{ } a d,{ } b{ }, ,{ }

a( ) a ′ b c+ +( ) a( ) b c+( )=
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The semantics of ZBDD nodes were first articulated by Lobbing et al. in [14]. Given a set of at-
oms , a ZBDD node labeled with atom  represents a combination set  constructed
according to the formula:

(7)

where  and  are the combination sets associated with the 0- and 1-children of that node (see
Table I.) The terminal 0 and 1 nodes correspond, respectively, to the empty set (set of no combina-
tions) and to the set of consisting of the empty combination. The “product” in (7) is similar to the
Cartesian product of two sets and is defined by

(8)

For example, given the combination sets  and , their prod-
uct is‡

(9)

When used to represent a CNF formula, the formula  associated with a ZBDD node labeled by
variable  follows the same template of (7) except that the union of atoms in a combination is
viewed as logical OR and the union of the combinations is viewed as logical AND yielding

(10)

where  and  are the formulas associated with the 0- and 1-children of that node (see Table I.)
The terminal 0 and 1 nodes, correspond, respectively, to the constant 1 and constant 0 functions.

To represent CNF formulas with ZBDDs, the set of atoms is taken to be the set of literals over
which the formula is defined. In addition, the positive and negative literals of each variable are
grouped together so that they are adjacent in the total order used in constructing the ZBDD. This

‡ Note that . For this example, .

a b c …, , ,{ } x f

f g x{ } h×∪=

g h

S T× s t∪{ }
s S∈ t T∈,

∪=

S a b,{ } b c,{ },{ }= T a d,{ } e{ },{ }=

S T× S T∪≠ S T∪ a b,{ } b c,{ } a d,{ } e{ }, , ,{ }=

S T× a b d, ,{ } a b e, ,{ } a b c d, , ,{ } b c e, ,{ }, , ,{ }=

f
x

f g( ) x h+( )⋅=

g h

Fig. 3. Computation of  using (12) and (13).a b ′+( ) b c+( )

b

a

c

1
0%

0
100%

50%

75%

[50%, 62.5%]

b′
50%

b

a

c

1
0%

0
100%

50%

75%

50%

b′
50%

b ′
25%

(a) Using bound in (12) (b) By computing 

hg

g h⋅

g h⋅
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restriction facilitates, among other things, the identification and automatic removal of tautologies,
i.e. combinations that have the form , to further reduce the size of the ZBDD [6].

To determine the size of the function represented by the CNF formula associated with a ZBDD
node, we must first re-write (10) as the disjoint sum of two terms:

(11)

This immediately leads to

(12)

which, unlike (6) for BDDs, requires that we compute the size of the product of the two child for-
mulas. This is not a problem if one or both of the children is a terminal node, but does pose a serious
complication if they are both internal nodes. We propose three solutions: 

Exact. One way to resolve this complication is to (recursively) create additional ZBDD nodes for
such products until one of the children becomes terminal. This will provide us with the exact an-
swer, but may exponentially increase the size of the ZBDD. Some of that increase can be amelio-
rated with caching and garbage collection. In particular, created nodes can be eliminated as soon as
they have been used to tighten the bound of their parent.

Unrestricted bound. An alternative to computing  exactly is to bound it. The upper bound
is easily established as  and occurs when either  or . The lower bound can
be determined by noting that . Thus  is smallest when  is larg-
est which occurs when  and  are disjoint. This gives a lower bound of  and yields
the interval

(13)

where the max in the lower bound insures that the estimate remains non-negative.
An illustration of these computations is given in Figure 3 for the example formula

. The percentages annotating the ZBDD nodes denote the function sizes of their
corresponding formulas as computed by (12) and (13). The uncertainty in the size at the top node is
resolved, in part b of the figure, by creating a node for the product of its children.

Restricted Bound. Between the two extremes of an exact count and a bound computed according
to (13) we can produce a range of approximations that trade accuracy with speed and memory con-
sumption. Specifically, when a given level of accuracy, say 10%, is exceeded by the bound com-

x x ′ …+ +( )

f g( ) x h+( )⋅ x g⋅ x ′ g h⋅( )⋅+= =

 f 1
2
--- g g h⋅+( )=

g h⋅
min g h,( ) g h≤ h g≤

g h⋅ 1 g ′ h′+–= g h⋅ g ′ h ′+
g ′ h ′ g h 1–+

g h⋅ max 0 g h 1–+,( ) min g h,( ),[ ]∈

a b ′+( ) b c+( )⋅

x
f

g h

p q

x ′

Fig. 4. The special case when  is not vacuous in .g x
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puted from (13), additional ZBDD nodes are created for the product formulas until the desired level
of accuracy is achieved.

We must finally note that (12) is correct only when  is vacuous in . The only situation when
this is not true is depicted in Figure 4 where g’s node is labeled by the literal .** Substituting

 in (11) produces the disjoint sum

(14)

which readily leads to

(15)

Figure 5 illustrates the three possible modes of our approach on the bridging-fault bf2670-001 in-
stance. Despite setting an error limit of 20%, on average, the restricted bound and the unrestricted
bound methods reported results within 7% and 24%, respectively, of the exact answer. 

6   Experimental Evaluation
Satometer is implemented in C++ using the CUDD package [23]. It incorporates the ZBDD en-

hancements described in [1] and [6] for symbolic manipulation of CNF formulas. In this section we
demonstrate its utility by applying it in a number of experimental scenarios. We configured it to
report the size of the explored search space to within 20% of the exact answer; in many cases it was
able to achieve a higher level of accuracy or to even report the exact answer. In the tables to follow,
a single number in the explored space columns indicates that an exact answer was reported; ranges
are indicated as intervals. All experiments were performed on an AMD Athlon 1.4 GHz machine
with 1GB of RAM running the Linux operating system.

6.1  Effect of Preprocessing the CNF Formula

A variety of preprocessing techniques have been proposed to modify a CNF formula before sub-
mitting it to a SAT solver. These techniques generally add clauses to the formula in order to increase

**Note that h’s node cannot be labeled by  as this would create a tautology that is automatically eliminated.

g x
x ′

x ′

g p( ) x ′ q+( )⋅=

f x p q⋅( )⋅ x ′ p h⋅( )⋅+=

 f 1
2
--- p q⋅ p h⋅+( )=
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Fig. 5. Applying three modes of the proposed approach to bf2670-001.cnf instance
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the number of potential implications or perform stylized algebraic simplifications to reduce the
number of variables. We used Satometer to study the effectiveness of such techniques. In each case
we compare the size of the space explored by a standard DLL algorithm†† [9] (i.e. without conflict
analysis) on the original as well as on the modified formula. The time-out limit in these experiments
was set to 10 seconds; Satometer’s run time was negligible. The results of these experiments are
given in Table II, Table III, and Table IV.

Addition of consensus clauses. In [2] the authors report that augmenting a CNF formula with
clauses identified using consensus can reduce search time. To avoid generating an exponential num-
ber of clauses, they proposed a truncated iterative consensus procedure that augments the original
formula with clauses whose size (number of literals) is limited by a small user-specified constant.
They report speedups on the aim benchmarks from the DIMACS set [10] when the size of added
clauses are limited to 3 or fewer literals. 

A sampling of results on some unsatisfiable instances from this suite is shown in Table II. Column
1 lists the name of the benchmark; columns 2 and 3 give the number of variables (V) and clauses
(C) in the original formula; column 4 gives the number of consensus clauses that are added to the
formula; and columns 5 and 6 indicate the size of explored space reported by Satometer. The data
in this table clearly show the effectiveness of these added clauses. For the two smaller instances, the
search algorithm was actually able to explore the entire search space, and thus prove the unsatisfi-
ability of the modified formula. In all cases, the addition of these clauses helped the SAT solver
explore a significantly larger portion of the search space in the allotted amount of time.

Addition of symmetry-breaking predicates. In [8] the authors propose analyzing a CNF formula
1) to identify its symmetries, and 2) to augment it with clauses that break those symmetries. The
intuition here is that the symmetry-breaking clauses act by allowing only one of many equivalent
variable assignments to be a potential solution to the formula. If the original formula is satisfiable,
the number of solutions may considerably decrease after pre-processing, clearly indicating that the
search space was reduced. However, even if the original instance was not satisfiable, “the number
of equivalent roads leading nowhere” would be reduced, and a generic SAT solver is likely to con-
clude much faster that no solution exists.

This intuition is confirmed by the data in Table III (whose layout is identical to that of Table II.)
The benchmarks in this experiment are members of the unsatisfiable hole suite (which relates to the
Pigeonhole principle.) The augmentation of each instance by a small number of symmetry-breaking
clauses drastically enhances the ability of the SAT solver to prove unsatisfiability. This trend is
clearly accentuated as instance sizes increase.

Algebraic simplification. Another formula preprocessing technique is based on formula simplifi-
cation rules aimed at reducing the number of variables or clauses in the formula [15]. We studied
this approach on some large hard bounded model checking [4] and microprocessor verification [26]
instances. Results on a representative sample are given in Table IV.

Unlike the earlier experiments, the performance of the SAT solver on the modified formulas is
not significantly better than its performance on the original formulas. The best improvement is in
the barrel7 benchmark and can be attributed to the simplifier’s ability to drastically reduce the num-
ber of variables (from 3523 to 800.) The low coverage in this experiment is also an indication of the
difficulty of these instances.

††The solver uses a fixed decision heuristic, chronological backtracking, and implements BCP as implemented in
Chaff.
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6.2  Analysis of Dynamic Techniques

In this set of experiments, we report on the application of Satometer to various SAT solvers with
a variety of parameters. Our experiments involve three different SAT solvers: a simple DLL solver
[9], SATIRE [27], and Chaff [18]. The last two solvers represent efficient implementations of the
basic DLL solver. Chaff, however, is currently known as the leading DLL-based SAT solver. The
goals of this experiment are to determine a) the best of two black-box SAT solvers, in which each
solver’s description is hidden, b) the best of a variety of decision heuristics c) the difficulty of CNF
instances d) the best of various conflict analysis techniques, and e) an estimate of the number of
satisfying assignments in a satisfiable instance.

Black box A vs. black box B experiment. In the following experiment, several SAT solvers are
provided. However, the user has no knowledge of the internals of any of the SAT solvers. Given a
set of hard instances, the user is required to identify the best solver in the shortest possible time. In
general, the user will need to run each SAT solver for a specified time or randomly select a solver
and hope that it is the best among all others. Using the proposed method, however, can give an in-
sight to which solver performs best within the specified run time limit. Table V shows several re-
sults for various hard instances from bounded model checking [4], microprocessor verification [26],
FPGA routing [19], and the DIMACs set [10]. We tested each instance for 10 seconds using the

TABLE II : Addi t ion  of  consensus clauses

Benchmark
Original Modified Explored Space, %

V C Extra C Original Modified

aim-50-1_6-no-4 50 80 54 57.06 100

aim-100-1_6-no-3 100 160 73 0.015 100

aim-200-1_6-no-3 200 320 233 0.049 [97.72, 100]

aim-200-2_0-no-1 200 400 191 0 [87.75, 100]

TABLE III : A ddit ion  of  symmetry-breaking  pr edicates

Benchmark
Original Modified Explored Space, %

V C Extra C Original Modified

hole-7 56 204 14 100 100

hole-8 72 297 16 79.2 100

hole-9 90 415 18 37.5 100

hole-10 110 561 20 18.75 [99.98, 100]

hole-11 132 738 22 9.39 [99.96, 100]

hole-12 156 949 24 4.68 [99.96, 100]

TABLE IV: Algebra ic s impli f icat ion

Benchmark
Original Modified Explored Space, %

V C V C Original Modified

longmutl7 3319 10335 2184 7635 0.280 0.341

queinvar20 2435 20671 2343 28438 50 50.1

barrel7 3523 13765 800 3447 51.02 62.46

dlx2_cc_bug08 1515 12808 1486 13875 0 9.38
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following three SAT solvers and options: standard DLL solver, Chaff with a fixed decision heuris-
tic, and Chaff with the default cherry.smj heuristic. The results clearly indicate the superiority of
the third solver among the other two solvers for almost all benchmarks, due to the significantly high
search space coverage achieved in the given time limit. Figure 6 shows a detailed space coverage
analysis of the barrel5 instance for all three solvers.

Comparison of decision heuristics. As shown in Table V, the proposed method can also be used
classify decision heuristics and rate their performance on various SAT instances. We show the re-
sults for two decision heuristics: a) static fixed [9]: unresolved variables with minimum index are
selected first for decisions; b) dynamic VSIDS [18]: variables that appear in the highest number of
clauses are selected first. (Some weight is given to variables appearing in recent conflict-induced
clauses). Again, the results show the effectiveness of VSIDS as opposed to the fixed decision heu-
ristic. Nevertheless, the k2fix_gr_rcs_w9 instance show a larger upper bound of the explored search

TA BLE V: Percentage of  explored  sea rch  space for  va r ious SAT so lve r  
and  dec is ion  heur i s t ic s

Benchmark Space Explored,%

Family Name V C DLL Chaff–Fixed Chaff–VSIDS
uP

V
er

if
ic

at
io

n 2dlx_cc 4524 41704 0 [81, 100] [99.06, 100]

3pipe 2392 27533 0.098 [47.23, 62.63] [80.41, 100]

4pipe 5096 80213 0.025 [69.68, 88.15] [77.77, 95.46]

9vliw 19148 179492 0 [28.91, 35.16] [99.97, 100]

DIMACS par32-1-c 1315 5254 0 [78.64, 89.39] [82.72, 100]

B
ou

nd
ed

 M
od

el
C

he
ck

in
g

barrel6 2306 8931 52.77 [60.94, 63.83] 100

barrel7 3523 13765 51.02 [60.95, 68.79] [98.34, 100]

barrel9 8903 36606 50.11 [58.59, 58.84] [99.94, 100]

longmult6 2848 8853 0.40 [72.39, 80.43] [99.93, 100]

longmult8 3810 11877 0.21 [80.27, 87.78] [90.48, 100]

queuin18 2081 17368 0 [96.57, 100] 100

queuin20 2435 20671 50 [92.3, 100] [97.59, 100]

F
P

G
A

R
ou

ti
ng

alu2_gr_rcs_w7 3570 73478 2.36 [29.99, 36.55] [50, 58.75]

k2fix_gr_rcs_w8 10056 271393 1.18 [0.665, 7.65] [0.798, 9.03]

k2fix_gr_rcs_w9 11313 305160 0.59 [0.393, 5.147] [0.400, 3.34]

vda_gr_rcs_w8 5776 116522 0 [0.615, 6.65] [0.819, 9.75]

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000

%
 C

ov
er

ed
 S

ea
rc

h 
S

pa
ce

Conflict Number

DLL-low
DLL-high

Chaff-Fixed-low
Chaff-Fixed-high
Chaff-VSIDS-low

Chaff-VSIDS-high

Fig. 6. Search space coverage for Barrel5.cnf



14 
space using the fixed decision order as opposed to VSIDS. However, since the ranges for both heu-
ristics overlap, its hard to identify the optimal decision heuristic.

Hard problem prediction. Table V also shows the difficulty of solving the FPGA routing instanc-
es as opposed to other hard instances for the given decision heuristics and SAT solvers. Figure 7
shows a detailed space coverage analysis of the k2fix_gr_rcs_w9 instance after unsuccessfully try-
ing to solve it with Chaff for up to 500 seconds. Perhaps, this method can be used as a metric to rate
the difficulty of SAT instances and assist SAT solver developers in improving their SAT tools.

One UIP vs. all UIPs conflict analysis. Recently, [28] analyzed various conflict clause learning
schemes. They found that different learning schemes can significantly effect the behavior of SAT
solvers. Based on various EDA instances, they were able to prove that the learning scheme based
on the first Unique Implication Point (UIP) [16] of the implication graph can be very effective in
solving SAT problems in comparison with other schemes such as the “All UIP” approach. In order
to further confirm this conclusion, we plotted the growth range, using the “All UIP” and the “1 UIP”
approach, for the queueinvar8 instance from the bounded model checking set. We implemented
both approaches in SATIRE. Figure 8 shows the runs using the SATIRE SAT solver. The coverage
percentage was measured after each backtrack call. As the plot clearly shows, the addition of all
UIPs resulted in a minor benefit and perhaps slowed the search process as additional time is spent
to generate all the UIP clauses. This detailed analysis of the internals of the search process provides
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a better understanding of the problem’s structure and the effectivity of the SAT solver and enhance-
ment being tested.

Number of satisfiable assignments. As mentioned earlier, the search space will never be totally
explored in “satisfiable” instances, as SAT solvers typically abort after identifying the first satisfy-
ing assignment. However, in some cases, several satisfying assignments, if not all, are needed. An
example is to identify all possible primary input assignments for a circuit that would minimize the
total gate delay. An insight into the number of possible satisfying assignments can be very helpful.
A satisfiable instance in which a satisfying assignment is identified at an early stage of the search
process is likely to have many satisfying assignments. In contrast, an instance that identifies a sat-
isfying assignment after exploring almost the complete search space probably has a few satisfying
assignments only. In order to test our assumption, we selected two satisfiable instances from the DI-
MACS set [10], namely the aim-200-1_6-yes1-1.cnf and ssa7552-160.cnf. The former is known to
have a single satisfying assignment only, whereas the latter represents a stuck-at-fault problem with
many satisfying assignments. Both instances were solved by Chaff in less than a second. We mea-
sured the explored search space after the search was completed for a single satisfying assignment.
Table VI shows the results.

As expected, the percentage of the search space explored by the aim* instance was tremendously
larger than the ssa* instance.

Again, as in the experiments in Section 6.1, the accuracy of our results are significant. Although
a user specified error limit of 20% is set, out of the 78 runs, 47, 6, 16, 8, reported results with 100%,
>99%, 90%~99%, 80%~90% accuracy. 

In terms of run time and memory consumption, constructing the ZBDDs is fast and is usually de-
pendent on the size of the clauses. Furthermore, the high compression power of the ZBDD data
structure utilizes less memory than a list data structure. As mentioned in Section 5.2, computing the
search space coverage with an unrestricted bound is done by a single traversal of the ZBDD. On the
other hand, the restricted bound and the exact count methods are slower, since additional ZBDD
nodes are created during the ZBDD traversal. The size of the ZBDD, however, doesn’t grow expo-
nentially since the additional ZBDD nodes are removed as soon as the function sizes of their corre-
sponding formulas are computed.

One way to reduce the run time and memory consumption is to only analyze conflict-induced
clauses of size  or less. In general, smaller clauses are more useful in measuring the explored
search space and require less ZBDD construction time and fewer ZBDD nodes. This approach,
however, can only be used to measure the lower bound of the explored search space. For the in-
stances reported in Table V and Table VI, Satometer was able to compute the search space coverage
for almost all instances in less than a second each.

7   Summary and Conclusions

We described Satometer, a tool that measures the percentage of search space explored by a SAT
solver. The tool can provide helpful diagnostic information, either during or at the conclusion of a
SAT run. We believe that tools such as this are needed to complement the powerful SAT engines

TABLE VI: P ercentage  of  explored  search  space  for  sa t i sf iab le  
ins tances  w ith  d if ferent  numbers  of  sa t i sfy ing  ass ignments

Benchmark Explored Space, %

aim-200-1_6-yes1-1.cnf 99.999

ssa7552-160.cnf 28.125

k
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that have been developed in recent years. We plan to identify other metrics that can help character-
ize a search process (e.g., the maximum number of satisfied clauses encountered at any point during
the search), to look for ways to further improve the efficiency of Satometer (e.g., by caching com-
putation results), and to use it to analyze the performance of solvers on hard SAT instances. We are
also planning to integrate Satometer into known SAT solvers and use the search space information
to improve decision and restart heuristics.
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